
Semantic Patches Considered Helpful

Gilles Muller, Yoann Padioleau
Ecole des Mines de Nantes

INRIA, LINA
44307 Nantes cedex 3, France

{Gilles.Muller,Yoann.Padioleau}@emn.fr

Julia L. Lawall, René Rydhof Hansen
DIKU

University of Copenhagen
2100 Copenhagen Ø, Denmark
{julia,rrhansen}@diku.dk

Introduction

Modern software development is characterized by the use
of libraries and interfaces. This software architecture car-
ries down even to the operating system level. Linux, for
example, is organized as a small kernel, complemented
with libraries providing generic functionalities for use in
implementing network access, file management, access to
physical devices, etc. Much of the Linux source code then
consists of service-specific files that use these libraries.
These libraries are also used by the many OS-level ser-
vices that are maintained outside of the Linux source tree.

Reliance on libraries, however, is a double-edged
sword. While libraries make it easy to create new soft-
ware, any change in a library interface can break all de-
pendent code. In the case of Linux, the libraries are cur-
rently undergoing rapid evolution, even in the so-called
stable version Linux 2.6 [7]. Service-specific code must
thus frequently be correspondingly updated to respect the
new interfaces. We refer to these modifications as collat-
eral evolutions. In the rest of this paper, we summarize
the issues involved in this kind of evolution in the con-
text of Linux, and propose a language-based approach to
document and automate the required code modifications.

The collateral evolution problem

We have recently begun to study the collateral evolution
problem in the context of Linux device drivers [10]. In
the Linux 2.6.13 source tree, there are over 150 driver
support libraries, each dedicated to a given bus or device
type, and almost 2000 device-specific files, each contain-
ing code for interacting with a specific device. A device-
specific file can use up to 59 different library functions
from up to 7 different libraries. In all, we have found
that driver code makes up around 50% of the Linux 2.6.13
source code. The number of collateral evolutions that af-
fect these files is massive. Using an automatic tool that
we have developed, we have identified over 1200 proba-

ble evolutions in Linux driver interfaces in the Linux 2.6
versions up to Linux 2.6.13, as compared to under 300 in
all of Linux 2.2. We have found that an evolution can trig-
ger collateral evolutions in up to almost 400 files, at over
1000 code sites. Among the probable evolutions we have
identified, we have studied 90 in detail. These affect over
1600 device-specific files in Linux 2.5 and Linux 2.6. The
collateral evolutions identified range from simply chang-
ing the name of a function, to complex transformations
that involve sophisticated analysis of the usage context
of each affected interface element, to construct new ar-
gument values, update error checking and error handling
code, eliminate newly redundant computations, etc.

Currently, collateral evolutions in Linux are mostly
done manually using a text editor, with the help of tools
such as grep. The large number of Linux drivers, and
complexity of the collateral evolutions, however, implies
that these approaches are time-consuming and unreliable,
leading to subtle errors when modifications are not done
consistently. For example, an evolution in an interface
may imply that a function that was formerly expected to
return 0 or -1 to indicate failure is now expected to re-
turn a more informative error code, such as -ENODEV or
-ENOMEM. Because the constants 0 and -1 can be used
with other meanings in device-specific code, simply re-
placing all occurrences of 0 or -1 by one of these values is
not likely to be correct. Furthermore, it is often necessary
to choose between a set of possible error codes, which
requires understanding the condition that caused the fail-
ure. Other collateral evolutions require multiple kinds of
changes in a single file, such as changes to function pro-
totypes, function definitions, and structure-field initializa-
tions. These scattered modifications must be kept consis-
tent and harmonious with the existing coding style.

As Linux is an open-source operating system and in-
volves multiple expertises, there is the further problem of
the variety of actors involved: library developers, main-
tainers of service-specific files, and motivated users. The

90



library developer is often a core member of the Linux de-
velopment community and is highly knowledgeable about
the OS. He makes changes in his library, and when these
changes affect the interface, he typically updates all of the
affected service-specific files that are part of the Linux
source tree. His task is tedious and error prone, but he
is well placed to understand both the reasons for the col-
lateral evolutions and the structure of the affected code.
Files that are overlooked by the library developer or that
are outside the Linux source tree, on the other hand, must
be updated by someone else. In these cases, either the
collateral evolution is performed by the maintainer of the
service-specific file or, in the case of orphaned code, the
collateral evolution is performed by a motivated user. The
maintainer is typically less familiar with the OS code than
the library developer but knows his own code, while the
motivated user may not be familiar with either of them.
In both cases, there is a problem of transfer of expertise.
The maintainer or user may not be aware that collateral
evolutions are needed, and when made aware, may not
understand the informal terminology used in library com-
ments or mailing lists that describes how the collateral
evolutions should be carried out. Further compounding
the problem of collateral evolutions is the number of li-
braries that may be used by a single service-specific file.
A maintainer or motivated user must keep up to date with
evolutions occurring in many different sources.

Finally, our study shows that collateral evaluations are
error-prone in practice. In 32% of the 90 evolutions we
have studied in detail, some collateral evolution was omit-
ted or done incorrectly. These introduced errors often per-
sisted over many versions of Linux and some have not, as
of this writing, been corrected.

Our vision

Our results clearly call for some form of automated sup-
port for collateral evolutions, both because of the diffi-
culty and tedium of updating so many files and because
of the errors that have been introduced. We envision a
language-based approach, where a library developer who
makes a change that affects the library interface creates a
precise and readable specification of the collateral evo-
lutions entailed by this change. The library developer
then disseminates this specification to the maintainers of
device-specific code, who can read the specification to un-
derstand the collateral evolutions that must be made to
their files. Furthermore, we envision a tool to carry out the
collateral evolutions described by the specification, that
can be used by the maintainers of device-specific code.
Such a tool should respect the coding style and preserve

the readability of the existing code.
It is instructive to compare our vision to the current

strategy for transmitting changes in Linux code, the patch
file. Patch code describes a specific change in a spe-
cific version of a single file. Thus, a library developer
who makes a change in an interface must modify each of
the affected files by hand, and create a patch describing
each modification. When a new version appears before
the change is accepted for inclusion in the kernel source
code, this work has to be repeated on the new code. Once
accepted, patches are then distributed to users who use
them to replicate the developer’s modifications in their
own files. This approach requires time-consuming and
error-prone manual modification initially, and then pro-
duces an artifact that is only applicable to the files that
are known to the library developer; no indication is pro-
vided as to how to map the collateral evolutions to other
files. Our goal is essentially to unify these specific patches
into a single generic version, that concisely captures the
essence of the required collateral evolutions and is appli-
cable to all relevant files. Such a specification must nec-
essarily be described in terms of the semantics of the old
and new code, rather than the details of its specific syntax.
For this reason, we refer to our specifications as semantic
patches.

The Coccinelle tool

To this end, we have begun designing a framework, Coc-
cinelle, that includes a language, SmPL,1 in which to ex-
press semantic patches that describe collateral evolutions,
and a transformation tool for applying semantic patches to
device-specific code. To fit with the habits of Linux pro-
grammer and to provide a legible syntax, SmPL is based
on the standard patch format. While an ordinary patch
only applies to specific files at specific lines, a SmPL se-
mantic patch is mapped by the transformation tool onto
the device-specific code not in terms of the syntax of the
device-specific code but in terms of its semantics. A
semantic patch specifies control and dataflow relation-
ships, and thus abstracts away from e.g. the many ways
of writing loops, the presence of unanticipated condition-
als, and the use of local variables to rename intermediate
values. SmPL also incorporates a collection of isomor-
phisms, which will ultimately be user configurable, to ab-
stract away from e.g., the many ways of testing for NULL
and the use or non-use of macros. So far, we have used the
language to write semantic patches for about two thirds of
the 90 evolutions we have studied in detail. Some work,

1SmPL is the acronym for “Semantic Patch Language” and is pro-
nounced “sample” in Danish, and “simple” in French.

91



however, remains on the design of the language, most no-
tably how to express distinct paths of computations, such
as those that end in an error case, in a way that is harmo-
nious with the essentially linear patch-like syntax.

Related approaches

Designing a program transformation system targeting
real-world operating systems code is a challenging task.
Over the last few decades numerous program transfor-
mation systems have been developed (e.g., [1, 2, 3, 11]).
Many, however, have met with only limited success, ei-
ther because they have tackled a too general problem, and
thus have ended up being unwieldy, or because they have
tackled a too specific problem, and thus have ended up
being inapplicable to most real-world code. Coccinelle
is targeted toward a specific problem, but one that affects
a wide and well-identified code base. Furthermore, col-
lateral evolutions affect code related to library interfaces,
and we have found in practice that the structure of such
code is mostly determined by the constraints of the library
rather than individual coding style. Thus, we expect that
in the collateral evolution case, it will be possible to strike
a balance between generality and simplicity, to create a
transformation system that is useful in practice.

Another approach to aid in software evolution that has
emerged in recent years is aspect-oriented programming
(AOP) [6]. In this approach, new functionalities are ex-
pressed in a separate module, called an aspect, and woven
into the original program at compile time or run time. Fi-
uczynski et al. are developing a variant of AOP, named
C4, that allows expressing semantic patches with a dif-
ferent purpose than those described here, that of integrat-
ing new functionalities into Linux [4, 5]. Our work, fo-
cussing on collateral evolutions rather than new complete
functionalities, is complementary to theirs, as once a C4
semantic patch has been created for a specific version of
Linux, it is subject to collateral evolutions, just like any
other Linux service-specific code. Furthermore, the tech-
nical goals of the two approaches are different, as we aim
to transform the source code, to keep the code base up
to date, as is currently done by hand in Linux, whereas
they aim to create a new kind of pluggable module. Still,
in previous work we have developed pluggable modules
using some of the technology envisioned for SmPL [8].

Future steps

In this paper, we have presented the collateral evo-
lution problem, and our proposed solution, the Coc-
cinelle program transformation framework. More in-

formation can be found in our study of collateral evo-
lutions in Linux device drivers [10] and our prelim-
inary design of SmPL [9]. Currently, we are refin-
ing the design of the language and developing the cor-
responding transformation tool. Future work includes
developing better tools for identifying collateral evo-
lutions and tools to help in the creation of semantic
patches. More information about the project is available
at http://www.emn.fr/x-info/coccinelle/.

References
[1] R. M. Burstall and J. Darlington. A transformation system

for developing recursive programs. Journal of the ACM,
24(1):44–67, 1977.

[2] C. Consel, J. L. Lawall, and A.-F. Le Meur. A tour of
Tempo: a program specializer for the C language. Science
of Computer Programming, 52:341–370, 2004.

[3] M. Erwig and D. Ren. Type-safe update programming. In
European Symposium on Programming (ESOP), 2003.

[4] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker.
Patch (1) considered harmful. In 10th Workshop on Hot
Topics in Operating Systems (HotOS X), Santa Fe, NM,
June 2005.

[5] M. E. Fiuczynski. Better tools for kernel evolution, please!
;LOGIN:, 30(5):8–10, Oct. 2006.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In ECOOP
2001 – Object-Oriented Programming, 15th European
Conference, number 2072 in Lecture Notes in Computer
Science, pages 327–353, Budapest, Hungary, June 2001.

[7] LWN. API changes in the 2.6 kernel series, Oct. 2005.
http://lwn.net/Articles/2.6-kernel-api/.

[8] G. Muller, J. Lawall, J.-M. Menaud, and M. Südholt. Con-
structing component-based extension interfaces in legacy
systems code. In ACM SIGOPS European Workshop 2004
(EW2004), pages 80–85, Leuven, Belgium, Sept. 2004.

[9] Y. Padioleau, J. L. Lawall, and G. Muller. SmPL: A
domain-specific language for specifying collateral evolu-
tions in Linux device drivers. In International ERCIM
Workshop on Software Evolution (2006), Lille, France,
Apr. 2006.

[10] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in Linux device drivers. In The first
ACM SIGOPS EuroSys conference (EuroSys 2006), pages
59–71, Leuven, Belgium, Apr. 2006.

[11] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a script-
ing language for refactoring. In International Conference
on Software Engineering (ICSE), Shanghai, China, May
2006.

92




